natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, activate(XS)), N, X, activate(XS))
u(pair(YS, ZS), N, X, XS) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, activate(XS)), N, X, activate(XS))
u(pair(YS, ZS), N, X, XS) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X
TAKE(N, XS) → SPLITAT(N, XS)
AFTERNTH(N, XS) → SPLITAT(N, XS)
SPLITAT(s(N), cons(X, XS)) → U(splitAt(N, activate(XS)), N, X, activate(XS))
AFTERNTH(N, XS) → SND(splitAt(N, XS))
SEL(N, XS) → AFTERNTH(N, XS)
SPLITAT(s(N), cons(X, XS)) → SPLITAT(N, activate(XS))
ACTIVATE(n__natsFrom(X)) → NATSFROM(X)
U(pair(YS, ZS), N, X, XS) → ACTIVATE(X)
SPLITAT(s(N), cons(X, XS)) → ACTIVATE(XS)
TAKE(N, XS) → FST(splitAt(N, XS))
SEL(N, XS) → HEAD(afterNth(N, XS))
TAIL(cons(N, XS)) → ACTIVATE(XS)
natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, activate(XS)), N, X, activate(XS))
u(pair(YS, ZS), N, X, XS) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
TAKE(N, XS) → SPLITAT(N, XS)
AFTERNTH(N, XS) → SPLITAT(N, XS)
SPLITAT(s(N), cons(X, XS)) → U(splitAt(N, activate(XS)), N, X, activate(XS))
AFTERNTH(N, XS) → SND(splitAt(N, XS))
SEL(N, XS) → AFTERNTH(N, XS)
SPLITAT(s(N), cons(X, XS)) → SPLITAT(N, activate(XS))
ACTIVATE(n__natsFrom(X)) → NATSFROM(X)
U(pair(YS, ZS), N, X, XS) → ACTIVATE(X)
SPLITAT(s(N), cons(X, XS)) → ACTIVATE(XS)
TAKE(N, XS) → FST(splitAt(N, XS))
SEL(N, XS) → HEAD(afterNth(N, XS))
TAIL(cons(N, XS)) → ACTIVATE(XS)
natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, activate(XS)), N, X, activate(XS))
u(pair(YS, ZS), N, X, XS) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPSizeChangeProof
SPLITAT(s(N), cons(X, XS)) → SPLITAT(N, activate(XS))
natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, activate(XS)), N, X, activate(XS))
u(pair(YS, ZS), N, X, XS) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X
From the DPs we obtained the following set of size-change graphs: